Synthese von C-substituierten 2,5-Dihydro-1H-borolen (3-Borolenen)

Gerhard E. Herberich*, Hans-W. Marx und Trixie Wagner

Institut für Anorganische Chemie, Technische Hochschule Aachen, D-52056 Aachen, Germany

Eingegangen am 30. Mai 1994

Key Words: 1H-Boroles, 2,5-dihydro / 3-Borolenes / 2-Boraindan, 4,5,6,7-tetrahydro-

Synthesis of C-substituted 2,5-Dihydro-1H-boroles (3-Borolenes)

Magnesium-diene addition compounds derived from isoprene, 2,3-dimethylbutadiene, and 1,2-dimethylenecyclohexane are treated with boron halides $BCl_2(NR_2)$ (R = Me, Et, *iPr*), PhBCl₂, or MeBBr₂ to give *C*-substituted 2,5-dihydro-1*H*-boroles (3-borolenes) **3**-**5**. In a new in situ procedure 1,3pentadiene reacts with Mg/BCl₂(NR₂) in THF to yield 2-methyl derivatives 2-MeC₄H₅BNR₂ (**2**). The NMe₃ adduct of

2,5-Dihydro-1*H*-borole oder 3-Borolene (1) sind aufgrund ihrer Allylboran-Teilstruktur hochreaktive ungesättigte Organoborane^[1,2]. Sie können in Abhängigkeit vom Substitutionstyp eine klassische (1A) oder eine nichtklassische Grundzustandsstruktur (1B) besitzen^[3].

3-Borolene, die an den Ring-C-Atomen keine Substituenten tragen, sind gut bekannt^[2]. Sie sind über die "Magnesium-Route" zugänglich und haben breite Anwendung zur Darstellung von 2-Borolenen^[2a,4] und 1*H*-Borol-Dianionen^[5] gefunden, ferner als C₄-Bausteine in der stereoselektiven organischen Synthese^[6] und als Ligandenquelle bei der Darstellung von Borol-Komplexen^[7].

$$\xrightarrow{+ \text{ Mg}^{\bullet}} \text{ MgC}_{4}\text{H}_{6}(\text{THF})_{2} \xrightarrow{+ \text{ RBX}_{2}} \text{ B-R}$$

$$\xrightarrow{- \text{ MgX}_{2}} \text{ - 2 THF}$$

$$1$$

C-substituierte 3-Borolene sind ebenfalls bekannt, jedoch ist ihre Synthese weniger systematisch entwickelt. Wir haben nach Erweiterungen der Magnesium-Route gesucht und erhielten, ausgehend von 1,3-Pentadien, Isopren, 2,3-Dimethylbutadien und 1,2-Dimethylencyclohexan, die 3-Borolen-Derivate 2-5.

Synthesen

Erster Schritt unserer Synthesen ist die Reduktion von Dienen mit Magnesium zu Magnesium-Dien-Additionsverbindungen. Zwei Bedingungen müssen hier erfüllt werden: 4,5,6,7-tetrahydro-2-methyl-2-boraindan **5e** · NMe₃ undergoes a topomerization with $\Delta G \neq_{290} = 59 \pm 2$ kJ/mol in a dissociative-associative process. The crystal structure of 3,4-dimethyl-1-phenyl-3-borolene (**4d**) has been determined. The molecule displays a classical planar structure. There are no indications for specific intermolecular interactions.

Das Dien-LUMO darf energetisch nicht zu hoch liegen.
 Das Magnesium muß sorgfältig aktiviert sein.

Als Dien sind Butadien^[8], Isopren^[9], 2,3-Dimethylbutadien^[10], 2-Phenylbutadien^[11], 2,3-Diphenylbutadien^[12], 1,4-Diphenylbutadien^[11,13], 1,2-Dimethylencycloalkane [CH₂]_n-C₂(=CH₂)₂ mit $n = 3,4,5^{[14]}$, Myrcen^[13] und 1-(Dialkylamino)-3,4-dimethylenboracyclopentane^[15] eingesetzt worden. Substituenten in 1,4-Position beeinflussen die Energie des Dien-LUMOs stärker als solche in 2,3-Stellung^[16]. Wie man sieht, tragen die aufgezählten Diene Alkylsubstituenten nur in 2,3-Position, nicht in 1,4-Position; dagegen werden die elektronenziehenden Phenylgruppen in beiden Positionen toleriert. 1,3-Pentadien ist wohl nicht reduzierbar^[17], was wir bestätigen können.

Zur Aktivierung von Magnesium sind viele Methoden verwendet worden^[18], darunter die Aktivierung mit Iod^[19], mit Alkyl- oder Arylhalogeniden^[20], durch Zusatz von Anthracen^[21], durch Ultraschall^[22] oder mechanisch durch trockenes Rühren unter Schutzgas^[23]. Besonders aktives Magnesium erhält man durch Erzeugung des Metalls in situ nach Rieke^[14,24].

Im zweiten Schritt wird die Magnesium-Dien-Verbindung mit Borhalogeniden umgesetzt, zumeist und mit besonders gutem Erfolg mit Dichlor(dialkylamino)boranen. So wurden die Verbindungen 3a-d aus Isopren, $4a-d^{[25,26]}$ aus 2,3-Dimethylbutadien und 5a-e aus 1,2-Dimethylencyclohexan erhalten. Entsprechende Reaktionssequenzen sind

Chem. Ber. **1994**, *127*, 2135–2140 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/1111–2135 \$ 10.00+.25/0

auch mit 1-(Dialkylamino)-3,4-dimethylenboracyclopentanen^[15] und mit 1,4-Diphenylbutadien^[27] möglich. **4c** ist bereits früher aus 2,3-Dimethylbutadien/Kalium/BF₂(N*i*Pr₂) in geringer Ausbeute erhalten worden^[26].

Wie schon erwähnt, versagt die zweistufige Reaktionsführung im Fall des 1,3-Pentadiens. Wir fanden jedoch, daß sich 1,3-Pentadien mit aktiviertem Magnesium und Dichlor(dialkylamino)boranen in THF in einer Eintopfreaktion mit mäßigen Ausbeuten zu den 3-Borolen-Derivaten 2a-c umsetzen läßt. Die Verwendung von THF als Solvens ist essentiell. In Hexan oder Dioxan konnte keine Reaktion beobachtet werden. In Diethylether ist die Reaktion sehr langsam; gleichzeitige Beschallung mit Ultraschall bewirkt eine deutliche Beschleunigung, aber die Umsetzung bleibt langsamer als in THF. Wenn man versucht, die Eintopfreaktion mit PhBCl₂ durchzuführen, kommt es in erheblichem Umfang zu Etherspaltung.

Von der *B*-Methyl-Verbindung **5e** und von der *B*-Phenyl-Verbindung **3d** wurden kristalline Trimethylamin-Addukte dargestellt.

Spektren

Die neuen Verbindungen haben wir in erster Linie durch ihre NMR-Spektren charakterisiert. Bei den ¹H-NMR-Spektren mußte im allgemeinen wegen der zu großen Anzahl der Protonen auf eine vollständige Spektrenanalyse verzichtet werden; eine Spektrensimulation für **2b** und Details der Zuordnung für **3c** finden sich im experimentellen Teil.

Während die ¹H-NMR-Spektren der 4,5,6,7-Tetrahydro-2-boraindane 5 effektiver C_{2v} -Symmetrie entsprechen, besitzt das Trimethylamin-Addukt 5e · NMe₃ nur noch laterale Symmetrie (C_s). Die Verbindung besitzt also diastereotope Gerüstseiten. So findet man im Tieftemperaturspektrum von 5e · NMe₃ (500 MHz, -55° C) für die Protonen der BCH₂-Gruppierungen in 1,3-Position ein AB-System. Dieses AB-System koalesziert bei höherer Temperatur und geht in ein Singulett (60 MHz, 20°C) über. Der zugrundeliegende dynamische Prozeß ist die Topomerisierung des Addukts, welche die diastereotopen Ringseiten im Zeitmittel identisch macht.

Für die Topomerisierung nehmen wir einen dissoziativassoziativen Prozeß an. Im System Me₃B/NMe₃ ist dieser Mechanismus nachgewiesen und eine Aktivierungsenergie $E_A = 73.3 \text{ kJ/mol}$ (entsprechend $\Delta G^{\pm}_{250} = 57 \pm 3 \text{ kJ/mol}$) gefunden worden^[28]. Da für **5e** · NMe₃ die Lage der ¹H-NMR-Signale (*B*-Methyl-Gruppe und NMe₃) temperaturunabhängig ist, muß die Konzentration an freiem Trimethylamin im Gleichgewicht verschwindend klein sein. Unter diesen Bedingungen kann die Aktivierungsenergie mittels der Koaleszenztemperaturmethode bestimmt werden. Mit Hilfe der Gleichung (1)^[29] erhält man mit $T_c = 290 \text{ K}$, J =17.0 Hz und $\Delta v = 44.1$ Hz die Freie Aktivierungsenthalpie $\Delta G^{\pm}_{290} = 59 \pm 2 \text{ kJ/mol}$.

Im Fall des Adduktes $3\mathbf{d} \cdot \mathbf{NMe}_3$ sind die Verhältnisse komplizierter. Das Boran $3\mathbf{d}$ besitzt C_s -Symmetrie und ist damit prochiral. Im (racemischen) Addukt $3\mathbf{d} \cdot \mathbf{NMe}_3$ liegt nun ein chirales Bor-Zentrum vor. Infolgedessen sind die

$$\Delta G^{*} = RT_{c} \ln \frac{\sqrt{2}RT_{c}}{\pi Nh\sqrt{6I^{2} + \Delta y^{2}}}$$
(1)

Protonen der beiden BCH₂-Gruppen jeweils diastereotop. Im ¹H-NMR-Spektrum beobachtet man effektive C_s -Symmetrie (60 MHz, 20°C) und bei höherer Spektrometerfrequenz (300 MHz, 20°C) Linienverbreiterung. Es gibt also hier wieder einen dynamischen Prozeß, welcher nun den Charakter einer Epimerisierung hat. Auf eine weitergehende Untersuchung wurde verzichtet.

Struktur von 3,4-Dimethyl-1-phenyl-3-borolen (4d)

Wie eingangs erwähnt, können 3-Borolene eine klassische (1A) oder eine nichtklassische Struktur (1B) annehmen^[3]. *B*-Amino-Substituenten stabilisieren die klassische Struktur aufgrund der bindenden π -Wechselwirkung der B-N-Gruppe. Eine Strukturbestimmung für ein einfaches 1-Amino-3-borolen ist für 4c bereits bekannt^[26]. In der entsprechenden 1-Phenyl-Verbindung 4d hat eine solche π -Wechselwirkung nur wenig Gewicht^[3a]. Die spektroskopischen Daten von 4d, insbesondere seine chemische Verschiebung δ ⁽¹¹B) = 89, geben keinen Hinweis auf eine nichtklassische Struktur in Lösung. Daß die klassische Struktur auch im festen Zustand vorliegt, wird durch eine Strukturanalyse gesichert.

Einkristalle von **4d** wurden aus Pentanlösung bei -30° C erhalten. **4d** kristallisiert in der Raumgruppe Cc mit zwei unabhängigen Molekülen in allgemeiner Lage. Hinweise auf spezifische intermolekulare Wechselwirkungen (zwischen dem Acceptor-Orbital am Bor und besetzten π -Orbitalen von Nachbarmolekülen) wurden nicht gefunden.

Die beiden unabhängigen Moleküle (A und B) haben im Rahmen der Meßgenauigkeit praktisch gleiche Strukturen. Das Molekül (Abb. 1) ist nahezu planar; der Diederwinkel zwischen der Borolen- und der Phenyl-Ausgleichsebene beträgt $5(1)^{\circ}$ [5.8(6) für Molekül A und 4.4(8)° für B]. Die Bindungslängen und Bindungswinkel entsprechen der Erwartung. Ein Vergleich mit den bekannten Daten der Amino-Verbindung 4c^[26] zeigt nur einen signifikanten Unterschied. Der Abstand B–C beträgt 157.4(3) für 4d und 159.2(2) pm für 4c. Die beobachtete Bindungsverkürzung dürfte eine Folge der stärkeren Positivierung des Bor-Atoms in 4d sein.

Diskussion

In dieser Arbeit haben wir eine systematische Synthese für C-substituierte 3-Borolene entwickelt. Diene mit terminalen Substituenten wie 1,3-Pentadien können mit Hilfe der

Abb. 1. Molekülstruktur von 4d (Molekül A; nur frei verfeinerte Wasserstoff-Atome werden gezeigt) mit Atomnumerierung, ausgewählten Bindungslängen [pm] und Bindungswinkeln [°]

	Molekül A	Molekül B
B-C2/B-C5 C2-C3/C4-C5 C3-C4	156.9(2)/157.4(2) 150.5(2)/150.8(3) 133.8(2)	157.7(3)/157.6(3) 149.7(3)/149.7(3) 134.6(2)
C2-B-C4 B-C2-C3	105.6(2) 106.8(2) 103.6(1)	105.8(1) 104.2(1)
B-C5-C4 C2-C3-C4 C3-C4-C5	103.3(1) 113.2(1) 113.2(1)	$104.0(1) \\112.8(2) \\113.2(1)$

neuen "in situ"-Reaktionsführung erstmals in 3-Borolene mit Substituenten in 2-Stellung übergeführt werden.

Die Magnesium-Route kann natürlich nur angewendet werden, wenn das Dien überhaupt mit Magnesium zu reagieren vermag. Z.B. ließ sich 2,3-Dimethylenbicyclo[2.2.1]heptan (6) weder thermisch noch sonochemisch noch in situ mit aktiviertem Magnesium umsetzen. Die entsprechenden 3-Borolene 7 konnten dennoch mit Hilfe aufwendigerer Alternativen erhalten werden, und zwar über den Zirconocen-Komplex Cp₂Zr · 6 und über das Dikalio-Derivat von 2,3-Dimethylbicyclo[2.2.1]hept-2-en^[30].

Eine quantenchemische Untersuchung der Struktur von 3-Borolen C₄H₆BH ergab, daß für dieses hypothetische Molekül die nichtklassische Struktur 1B marginal stabiler (<4 kJ/mol) ist als die klassische 1A, und daß die beiden Strukturen nur durch eine geringe Barriere getrennt sind^[3a]. In Verbindung 4d liegt eine schwache π -Wechselwirkung zwischen dem Acceptor-Orbital am Bor-Atom und den π -Elektronen der *B*-Phenyl-Gruppe vor, so daß hier die klassische Struktur günstiger werden dürfte.

Im festen Zustand sind die Gitterkräfte in van der Waals-Kristallen typischerweise eine Größenordnung größer als die hier diskutierten Energieunterschiede. Der kristallographische Befund kann deshalb die Strukturalternative **1A** versus **1B** hier nicht entscheiden. In Lösung wird man wegen der geringen Barriere zwischen **1A** und **1B** die Isomeren nicht NMR-spektroskopisch nebeneinander beobachten können; für die mobile Gleichgewichtsmischung sind dann gemittelte chemische Verschiebungen zu erwarten. Eine Beteiligung der nichtklassischen Form würde sich als Hochfeldverschiebung der olefinischen ¹³C-Signale und dramatischer des ¹¹B-Signals zu erkennen geben. Tatsächlich entspricht z.B. $\delta(^{11}B) = 89$ für 4d ganz der Erwartung für die klassische Struktur 1A. In summa: Der Grundzustand der hier beschriebenen 3-Borolene ist klassisch!

Diese Arbeit wurde durch die Volkswagen-Stiftung und den Fonds der Chemischen Industrie großzügig gefördert.

Experimenteller Teil

Alle Versuche wurden unter Stickstoff als Schutzgas mit wasserund sauerstofffreien Lösungsmitteln durchgeführt. Seesand zur Verwendung als Filterhilfe (Riedel de Haën) wurde 12 h bei 300°C/ 10^{-5} bar ausgeheizt. – NMR: WH-270 PFT (¹³C, 67.88 MHz) und WP-80 PFT (¹H, 80 MHz), Bruker; NM-PS-100 (¹¹B, 32.08 MHz) und NM-L-60 H (¹H, 60 MHz), Jeol; ferner VXR 300 (¹H, 300 MHz; ¹³C, 75.43 MHz) und Unity-500 (¹H, 500 MHz; ¹³C, 125.7 MHz), Varian; in Klammern *J*-Werte in Hz. – MS: Varian MAT CH-5-DF (nominelle Elektronenenergie 70 eV) und Finnigan-MAT 95 (nominelle Elektronenenergie 70 eV).

1. Zweistufige Synthese: Ein Überschuß von Magnesiumspänen wird in 50 ml THF suspendiert und mit einigen Körnchen Iod und etwas Brombenzol (0.5-1 ml) 0.5 h unter Beschallung mit Ultraschall gerührt. Anschließend wird das Dien zugegeben. Das Anspringen der Reaktion ist erkennbar an einer Grünfärbung der Lösung. Es wird eine Woche gerührt. Im Falle des 2,3-Dimethylbutadiens und des 1,2-Dimethylencyclohexans fallen die Produkte teilweise als blaßgrüne Feststoffe aus. Die Lösung wird mitsamt dem Feststoff von unverbrauchtem Magnesium dekantiert; sodann entfernt man das Lösungsmittel im Hochvakuum. Die so erhaltenen Magnesium-Diene werden ohne weitere Reinigung in die Borolensynthese eingesetzt. - Eine Suspension von 1 Äquivalent Magnesium-Dien in Pentan wird bei -78°C mit einer äquimolaren Menge Dihalogenboran versetzt. Dann läßt man die Temp. ansteigen. Zur Vervollständigung der Reaktion rührt man bei Raumtemp. nach (¹¹B-NMR-Kontrolle). Ausgefallenes Magnesiumchlorid wird abfiltriert und mit Pentan gewaschen. Dann entfernt man das Lösungsmittel vom Filtrat und erhält das Produkt durch Umkondensieren unter vermindertem Druck.

2. Eintopfverfahren: Magnesiumpulver wird, wie oben beschrieben, aktiviert. Man fügt 4 ml 1,3-Pentadien zu und rührt 0.5 h. Dann gibt man das entsprechende Dichlor(dialkylamino)boran zu und rührt solange bei Raumtemp., bis das Dichlorboran völlig verbraucht ist (¹¹B-NMR-Kontrolle). Zur Aufarbeitung stehen zwei Verfahren zur Verfügung. Nach Entfernen des Lösungsmittels unter vermindertem Druck wird der Rückstand mit Pentan gewaschen. Alternativ kann man Dioxan zufügen und das entstandene unlösliche Magnesiumchlorid-Dioxan-Solvat abfiltrieren. In beiden Varianten entfernt man anschließend das Lösungsmittel vom Filtrat und erhält das Produkt durch Umkondensieren unter vermindertem Druck.

Allgemeine Eigenschaften: Die 3-Borolene sind in der Regel farblose, im Vakuum destillierbare Flüssigkeiten; für kristalline Vertreter sind Schmp. angegeben. Die 1-(Dialkylamino)-Derivate sind mäßig sauerstoff- und feuchtigkeitsempfindlich, während die 1-Alkyl- und 1-Aryl-Verbindungen extrem empfindlich sind. Die Reinheit der Proben wurden NMR-spektroskopisch kontrolliert; nur Verbindung **5e** (Reinheit ca. 85%) konnte nicht befriedigend rein erhalten werden. Auf Elementaranalysen wurde wegen der Empfindlichkeit und teilweise auch beträchtlichen Flüchtigkeit der Substanzen generell verzichtet. *l*-(*Dimethylamino*)-2,5-dihydro-2-methyl-1H-borol (**2a**): Aus 1.2 g Mg, 4.0 ml, 1,3-Pentadien (2.73 g, 40 mmol) und 2.90 g BCl₂(NMe₂) (23.1 mmol) erhält man nach Vorschrift 2 0.97 g (34%) **2a**; Sdp. 50-60°C/30 mbar. – MS, *m*/*z* (%): 123 (90) [M⁺], 45 (100) [NHMe₂⁺]. – ¹H-NMR (500 MHz, CDCl₃): δ = 5.76 (m, CH=CH), 1.75 (q,t", 7.6/2.0, 2-H), 1.55 (d,t", 21.2/2.0, 5-H_a), 1.44 (d,t", 21.2/2.0, 5-H_b), 0.96 (d, 7.6, 2-Me); NMe₂: 2.81 und 2.73 (s). – ¹¹B-NMR (CDCl₃): δ = 50. – ¹³C{¹H}-NMR (125.7 MHz, CDCl₃): δ = 140.8 (C-3), 130.9 (C-4), 28 (br, C-2), 22 (br, C-5), 15.6 (2-Me); NMe: 41.2 und 40.1.

1-(Diethylamino)-2,5-dihydro-2-methyl-1H-borol (2b): Aus 1.2 g Mg, 4.0 ml 1,3-Pentadien (2.73 g, 40.1 mmol) und 2.60 g BCl₂(NEt₂) (18.8 mmol) erhält man nach Vorschrift 2 0.98 g (35%) 2b; Sdp. 50-60°C/15 mbar. - MS, m/z (%): 151 (37) [M⁺], 136 (100) [M⁺ - Me]. - ¹H-NMR (500 MHz, CDCl₃): δ = 5.79 (m, 3-H), 5.76 (m, 4-H), 1.76 (q,,t", 7.6/2.0, 2-H), 1.57 (d,,t", 21.1/2.0, 5-H_a), 1.46 (d,,t", 21.1/2.0, 5-H_b), 0.97 (d, 7.9, 2-Me); NEt₂: 3.142 und 3.138 (dq, -13.8/7.1, CH), 3.02 (q, 7.1, CH₂), 1.09 und 1.05 (t, 7.1, Me). Das ¹H-NMR-Spektrum konnte nach Zerlegung des A₃BCDXY-Spinsystems in ein A₃BXY- (2-Me, 2-H, 3-H, 4-H) und ein BCDXY-Spinsystem (2-H, 3-H, 4-H, 5-Ha, 5-Hb) simuliert werden; folgende Kopplungskonstanten ergaben sich: ${}^{3}J(2,Me) = 7.90$, ${}^{3}J_{23} = 1.55, \, {}^{4}J_{24} = -1.80, \, {}^{4}J(2,5-H_{a}) = -2.3, \, {}^{4}J(2,5-H_{b}) = -2.3,$ ${}^{3}J_{34} = 5.60, \, {}^{4}J(3,5-H_{a}) = 2.1, \, {}^{4}J(3,5-H_{b}) = 2.1, \, {}^{3}J(5-H_{a}, \, 5-H_{b}) = 2.1, \, {}^{3}J(5-H_{b}, \, 5-H_{b}) = 2.1, \, {}^{$ -21.5, für alle übrigen J = 0 Hz. $-{}^{11}$ B-NMR (CDCl₃): $\delta = 50$. $- {}^{13}C{}^{1}H$ -NMR (125.7 MHz, CDCl₃): $\delta = 140.8$ (C-3), 130.7 (C-4), 43.5 und 42.8 (NCH₂), 28 (br, C-2), 22 (br, C-5), 16.1, 15.6 und 15.1 (2-Me und 2 Me aus NEt₂).

1-(Diisopropylamino)-2,5-dihydro-2-methyl-1H-borol (2c): Aus 1.2 g Mg, 4.0 ml 1,3-Pentadien (2.73 g, 40.1 mmol) und 2.90 g BCl₂(N*i*Pr)₂ (16.0 mmol) erhält man nach Vorschrift 2 1.04 g (36%) 2c; Sdp. 50-60°C/5 mbar. – MS, m/z (%): 179 (31) [M⁺], 164 (100) [M⁺ – Me]. – ¹H-NMR (500 MHz, CDCl₃): δ = 5.81 (m, 3-H), 5.77 (m, 4-H), 1.79 (q,t", 7.6/2.0, 2-H), 1.73 (d,t", 21.2/2.0, 5-H_a), 1.67 (d,t", 21.2/2.0, 5-H_b), 0.95 (d, 7.6, 2-Me); N*i*Pr₂: 3.84 und 3.28 (sept, 6.7, NCH), 1.19, 1.16, 1.13 und 1.11 (d, 6.7, Me). – ¹¹B-NMR (CDCl₃): δ = 51. – ¹³C{¹H}-NMR (125.7 MHz, CDCl₃): δ = 139.9 (C-3), 131.0 (C-4), 29 (br, C-2), 23 (br, C-5), 16.4 (2-Me); N*i*Pr₂: 51.5 und 44.8 (CH), 24.5, 23.7, 22.4 und 22.0 (Me).

1-(Dimethylamino)-2,5-dihydro-3-methyl-1H-borol (**3a**): Aus 4.87 g Magnesium-Isopren (20.6 mmol) und 2.59 g BCl₂(NMe₂) (20.6 mmol) erhält man nach Vorschrift 1 2.27 g (90%) **3a**; Sdp. 65°C/ 30 mbar. – MS, *m/z* (%): 123 (100) [M⁺]. – ¹H-NMR (300 MHz, CDCl₃): $\delta = 5.44$, (m br, 4-H), 1.74 (dtt, 2.0/2.0/1.0, 3-Me), 1.49 (qd, 2.0/ca. 2, 2 × 2-H), 1.45 (br, 2 × 5-H); NMe₂: 2.74 und 2.70 (s). – ¹¹B-NMR (CDCl₃): $\delta = 49$. – ¹³C{¹H}-NMR (75.43 MHz, CDCl₃): $\delta = 142.52$ (C-3), 126.40 (C-4), 27.5 (br, C-2), 23.0 (br, C-5), 20.48 (3-Me); NMe₂: 40.50 und 40.18.

l-(*Diethylamino*)-2,5-*dihydro-3-methyl-1H-borol* (**3b**): Aus 4.05 g Magnesium-Isopren (17.1 mmol) und 2.39 g BCl₂(NEt₂) (17.1 mmol) erhält man nach Vorschrift 1 1.98 g (77%) **3b**; Sdp. 69°C/ 15 mbar. – MS, *m/z* (%): 151 (31) [M⁺], 136 (100) [M⁺ – Me]. – ¹H-NMR (300 MHz, CDCl₃): δ = 5.47 (m br, 4-H), 1.76 (dtt, 2.4/ 2.4/1.0, 3-Me), 1.52 (quin, 2.4, 2 × 2-H), 1.47 (br, 2 × 5-H); NEt₂: 3.05 und 3.04 (q, 7.1, CH₂), 1.06 und 1.05 (t, 7.1, Me). – ¹¹B-NMR (CDCl₃): δ = 52. – ¹³C{¹H}-NMR (75.43 MHz, CDCl₃): δ = 142.67 (C-3), 126.58 (C-4), 27 (br, C-2), 23 (br, C-5), 20.40 (3-Me); NEt₂: 43.87 und 43.58 (CH), 15.37 (2 Me).

l-(Diisopropylamino)-2,5-dihydro-3-methyl-1H-borol (3c): Aus 5.40 g Magnesium-Isopren (22.8 mmol) und 4.14 g BCl₂(N*i*Pr₂) (22.8 mmol) erhält man nach Vorschrift 1 3.85 g (94%) 3c; Sdp. 56°C/7 mbar. – MS, m/z (%): 179 (30) [M⁺], 164 (100) [M⁺ –

Me]. $- {}^{1}$ H-NMR (500 MHz, CDCl₃): $\delta = 5.46$ (m br, 4-H), 1.75 (dtt, 2.4/2.4/1.0, 3-Me), 1.63 (quin, 2.4, 2×2 -H), 1.59 (dq, 2.1/1, 2 \times 5-H); NiPr_2: 3.480 und 3.476 (sept, 6.7, CH), 1.14 und 1.12 (d, 2 Me). - Die Zuordnung der Signale von 2-H und 5-H des Ringgerüstes erfolgte aufgrund der Signalbreiten und der Kopplungskonstanten. So beobachtet man für 2-H ein virtuelles Pentett mit "J'' = 2 Hz und für 5-H ein virtuelles Sextett mit "J'' = 1 Hz. Wir nehmen an, daß 5-H mit 4-H (${}^{3}J = 2$ Hz) und den Protonen von 3-Me koppelt (${}^{5}J = 1$ Hz), während 2-H mit 4-H (${}^{4}J = 2.4$ Hz) und 3-H (${}^{4}J$ = 1.4 Hz) koppelt. – 11 B-NMR (CDCl₃): δ = 51. – ¹³C-NMR (67.88 MHz, CDCl₃): $\delta = 142.22$ (m, 5.5, C-3), 126.34 (dm, 154.6/5.8, C-4), 29.0 (t br, 110, C-2), 24.5 (br, verdeckt, C-5), 20.11 (q, 124.4, 3-Me); Zuordnung von C-2 und C-5: Man erwartet eine Hochfeldverschiebung des C-5- gegenüber dem C-2-Signal aufgrund der zu C-2 ß-ständigen und zu C-5 y-ständigen 3-Me-Gruppe. NiPr2: 48.42 und 48.32 (d, 134, CH), 22.91 und 22.85 (qm, 125.2/4.4, 2 Me).

2,5-Dihydro-3-methyl-1-phenyl-1H-borol (**3d**): Aus 8.50 g Magnesium-Isopren (35.9 mmol) und 5.70 g BCl₂Ph (35.9 mmol) erhält man nach Vorschrift 1 3.8 g (68%) **3d**; Sdp. 55°C/Hochvak., Schmp. 16°C. – MS, *m*/z (%): 156 (100) [M⁺]. – ¹H-NMR (500 MHz, CDCl₃): δ = 5.67 (m, 4-H), 2.32 (m, 2 × 2-H), 2.27 (m, 2 × 5-H), 1.89 (m, 3-Me); Phenyl: 7.84 (m, 2H_o), 7.51 (m, H_p), 7.43 (m, 2H_m). – ¹¹B-NMR (CDCl₃): δ = 87. – ¹³C-NMR (67.88 MHz, CDCl₃): δ = 142.37 (m, C-3), 126.09 (dm, 151.0/5.8, C-4), 34.4 (t br, 110, C-2), 30.2 (t br, 110, C-5), 19.42 (q, 125.0, 3-Me); Phenyl: 138 (br, C_i), 136.35 (dt, 157.6/7.4, 2 C_o), 132.60 (dt, 159.2/7.6, C_p), 127.76 (dd, 159.3/7, 2 C_m).

2,5-Dihydro-3-methyl-1-phenyl-1H-borol-Trimethylamin (3d · NMe₃): Zu einer Lösung von 0.57 g (3.65 mmol) 3d in 3 ml Et₂O wird bei -78°C eine Lösung von NMe₃ in Et₂O getropft. Es wird 1 h bei Raumtemp. gerührt. Nach Entfernen alles Flüchtigen i. Vak. wird aus Hexan/Et₂O (4:10) umkristallisiert. Man erhält 0.62 g (79%) 3d · NMe₃; Schmp. 84-86°C. - MS, m/z (%): 156 (100) [M⁺ -NMe₃]. - ¹H-NMR (80 MHz, CDCl₃): δ = 5.39 (br, 4-H), 1.72 (br, 3-Me), 1.52 (br, je 2 × 2-/5-H); Phenyl: 7.5 (m, 2H_o), 7.2 (m, 2H_m/H_p); NMe₃: 2.39 (s, 3 Me). - ¹¹B-NMR (CDCl₃): δ = 7. -¹³C-NMR (67.88 MHz, CDCl₃, -50°C): δ = 143.3 (m, 5, C-3), 127.5 (dq, 155/6.5, C-4), 31.0 (t br, 114, C-2), 26.1 (t br, 113, C-5), 20.6 (q, 124.0, 3-Me); Phenyl: 151.1 (br, C_i), 136.0 (dt, 155.8/7.5, 2 C_o), 126.5 (dd, 158.7/6.7, 2 C_m), 125.2 (dt, 158.0/7.4, C_p); NMe₃: 47.8 (q, 139.2, 3 Me).

l-(*Dimethylamino*)-2,5-dihydro-3,4-dimethyl-1*H*-borol (**4a**): Aus 21.0 g Magnesium-2,3-Dimethylbutadien (83.8 mmol) und 10.5 g BCl₂(NMe₂) (83.4 mmol) erhält man nach Vorschrift 1 5.20 g (45%) **4a**; Sdp. 60°C/11 mbar. – MS, *m*/*z* (%): 137 (100) [M⁺]. – ¹H-NMR (60 MHz, CDCl₃): δ = 1.70 (m br, 3-/4-Me), 1.54 (m br, 2 × 2-/5-H); NMe₂: 2.78 (s, 2 Me). – ¹¹B-NMR (CDCl₃): δ = 51. – ¹³C-NMR (67.88 MHz, CDCl₃): δ = 133.0 (m, C-3/4), 29 (t br, 110, C-2/5), 16.9 (q, 124.5, 3-/4-Me); NMe₂: 40.4 (qq, 133.7/4.3, 2 NMe).

1-(Diethylamino)-2,5-dihydro-3,4-dimethyl-1H-borol (4b): Aus 11.50 g Magnesium-2,3-Dimethylbutadien (45.9 mmol) und 6.50 g BCl₂(NEt₂) (46.5 mmol) erhält man nach Vorschrift 1 5.20 g (69%) 4b; Sdp. 80°C/4 mbar. – MS, *m*/z (%): 165 (70) [M⁺], 150 (100) [M⁺ – Me]. – ¹H-NMR (80 MHz, CDCl₃): δ = 1.68 (m, 3-/4-Me), 1.54 (m br, 2 × 2-/5-H); NEt₂: 3.05 (q, 7.1, 2 CH₂), 1.06 (t, 7.1, 2 Me). – ¹¹B-NMR (CDCl₃): δ = 51. – ¹³C-NMR (67.88 MHz, CDCl₃): δ = 133.0 (m, 5.8, C-3/4), 29.1 (t br, 110, C-2/5), 16.9 (q, 124.5, 3-/4-Me); NEt₂: 43.8 (tq, 134.2/4.4, 2 CH₂), 15.8 (q, 125.3, 2 Me).

1-(Diisopropylamino)-2,5-dihydro-3,4-dimethyl-1H-borol (4c): Aus 7.15 g Magnesium-2,3-Dimethylbutadien (28.5 mmol) und 5.19 g BCl₂(NiPr₂) (28.5 mmol) erhält man nach Vorschrift 1 4.41 g (80%) 4c; Sdp. 70-80°C/1 mbar. – MS, m/z (%): 193 (28) [M⁺], 178 (100) $[M^+ - Me]_{-1}$ - ¹H-NMR (80 MHz, CDCl₃): $\delta = 1.66$ (br, 3-/4-Me), 1.66 (br, 2×2 -/5-H); N*i*Pr₂: 3.48 (sept, 6.8, 2 CH), 1.12 (d, 6.8, 4 Me). $-^{11}$ B-NMR (CDCl₃): $\delta = 51. -^{13}$ C-NMR (67.88 MHz, CDCl₃): $\delta = 132.6$ (s, C-3/4), 29.0 (t br, 110, C-2/5), 16.7 (q, 124.4, 3-/4-Me); NiPr2: 48.4 (d, 134.2, 2 CH), 23.0 (qquin, 125.3/4.2, 4 Me).

2,5-Dihydro-3,4-dimethyl-1-phenyl-1H-borol (4d): Aus 32.0 g Magnesium-2,3-Dimethylbutadien (128 mmol) und 20.3 g PhBCl₂ (128 mmol) erhält man nach Vorschrift 1 7.5 g (34%) 4d; Sdp. 64°C/ Hochvak., Schmp. 50°C. – MS, m/z (%): 170 (100) [M⁺]. – ¹H-NMR (80 MHz, CDCl₃): $\delta = 2.25$ (m, 2 × 2-/5-H), 1.75 (m, 3-/4-Me); Phenyl: 7.74 (m, 2H_o), 7.40 (m, 2H_m), 7.33 (m, H_p). - ¹¹B-NMR (CDCl₃): $\delta = 89. - {}^{13}$ C-NMR (67.88 MHz, CDCl₃): $\delta =$ 132.7 (s, C-3/4), 36.0 (t br, 116, C-2/5), 16.6 (q, 125.0, 3-/4-Me); Phenyl: 136.5 (dt, 158.0/7.0, 2 C_o), 132.7 (dt, 159.0/7.0, C_p), 128.3 (dd, 159.0/7.0, 2 Cm).

2-(Dimethylamino)-4,5,6,7-tetrahydro-2-boraindan (5a): Aus 2.80 g Magnesium-1,2-Dimethylencyclohexan (10.2 mmol) und 1.30 g BCl₂(NMe₂) (10.2 mmol) erhält man nach Vorschrift 1 1.28 g (78%) 5a; Sdp. 88°C/8 mbar, Schmp. 23°C. - MS, m/z (%): 163 (100) $[M^+]$. – ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.96$ (m, 2 × 4-/7-H), 1.59 (m, 2×5 -/6-H), 1.44 (m, 2×1 -/3-H); NMe₂: 2.73 (s, 2 Me). - ¹¹B-NMR (CDCl₃): $\delta = 50. -$ ¹³C{¹H}-NMR (125.7 MHz, CDCl₃): $\delta = 136.13$ (C-4a/7a), 29.13 (C-4/7), 27.19 (br, C-1/3), 23.63 (C-5/6); NMe₂: 40.56.

2-(Diethylamino)-4,5,6,7-tetrahydro-2-boraindan (5b): Aus 2.94 g Magnesium-1,2-Dimethylencyclohexan (10.6 mmol) und 1.68 g BCl₂(NEt₂) (12.0 mmol) erhält man nach Vorschrift 1 1.32 g (65%) 5b; Sdp. 81°C/2 mbar. - MS, m/z (%): 191 (92) [M⁺], 176 (100) $[M^+ - Me]$. - ¹H-NMR (500 MHz, CDCl₃): $\delta = 1.98$ (m, 2 × 4-/ 7-H), 1.60 (m, 2 \times 5-/6-H), 1.47 (m, 2 \times 1-/3-H); NEt₂: 3.04 (q, 7.2, 2 CH₂), 1.05 (t, 7.2, 2 Me). $- {}^{11}$ B-NMR (CDCl₃): $\delta = 51$. ¹³C-NMR (67.88 MHz, CDCl₃): $\delta = 136.15$ (s br, C-4a/7a), 29.17 (t, 123.6, C-4/7), 26.9 (t br, verdeckt, C-1/3), 23.68 (tp, 126.7/3.5, C-5/6); NEt₂: 43.78 (tq, 134.2/4.3, 2 NCH₂), 15.39 (q, 125.5, 2 Me).

2-(Diisopropylamino)-4,5,6,7-tetrahydro-2-boraindan (5c): Aus 4.70 g Magnesium-1,2-Dimethylencyclohexan (17.0 mmol) und 2.66 g BCl₂(NiPr₂) (14.6 mmol) erhält man nach Vorschrift 1 3.00 g (94%) 5c; Sdp. 80-90°C/1 mbar. - MS, m/z (%): 219 (25) [M⁺], 204 (100) [M⁺ – Me]. – ¹H-NMR (500 MHz, CDCl₃): δ = 2.03 (m, 2×4 -/7-H), 1.65 (m, 2×1 -/3-H und 2×5 -/6-H); N*i*Pr₂: 3.53 (sept, 6.7, 2 CH), 1.18 (d, 6.7, 4 Me). $- {}^{11}B$ -NMR (CDCl₃): $\delta =$ 51. $- {}^{13}$ C-NMR (67.88 MHz, CDCl₃): $\delta = 135.7$ (s br, C-4a/7a), 29.0 (t, 123.4, C-4/7), 29 (t br, verdeckt, C-1/3), 23.7 (tm, 125, C-5/6); NiPr₂: 48.5 (d, 134.9, 2 CH), 23.0 (qm, 125.3/4.4, 4 Me).

4,5,6,7-Tetrahydro-2-phenyl-2-boraindan (5d): Aus 3.32 g Magnesium-1,2-Dimethylencyclohexan (12.0 mmol) und 2.00 g PhBCl₂ (12.7 mmol) erhält man nach Vorschrift 1 1.77 g (75%) 5d; Sdp. 90°C/Hochvak., Schmp. 43°C. - MS, m/z (%): 196 (100) [M⁺]. -¹H-NMR (500 MHz, CDCl₃): $\delta = 2.26$ (m, 2 × 1-/3-H), 2.10 (m, 2×4 -/7-H), 1.67 (m, 2×5 -/6-H); Phenyl: 7.85 (m, $2H_o$), 7.50 (m, H_p), 7.42 (m, 2 H_m). – ¹¹B-NMR (CDCl₃): $\delta = 89. - {}^{13}C$ -NMR $(67.88 \text{ MHz}, \text{CDCl}_3)$: $\delta = 136.03$ (s br, C-4a/7a), 34.2 (t br, 117, C-1/3), 28.76 (t, 124.3, C-4/7), 23.60 (tquin, 126.9/3.5, C-5/6); Phenyl: 138.5 (s br, C_i), 136.55 (dt, 157.7/7.3, 2 C_o), 135.72 (dt, 159.2/7.5, C_p), 127.93 (dd, 159.1/6.7, 2 C_m).

4,5,6,7-Tetrahydro-2-methyl-2-boraindan (5e): Aus 6.30 g Magnesium-1,2-Dimethylencyclohexan (22.8 mmol) und 4.10 g BBr₂Me

Chem. Ber. 1994, 127, 2135-2140

(22.1 mmol) erhält man nach Vorschrift 1 1.60 g (55%) 5e; Sdp. $87^{\circ}C/45$ mbar. - MS, m/z (%): 134 (100) [M⁺]. - ¹H-NMR (500 MHz, CDCl₃): $\delta = 2.00$ (m, 2 × 4-/7-H), 1.83 (m, 2 × 1-/3-H), 1.61 (m, 2 × 5-/6-H), 0.96 (br, Me). - ¹¹B-NMR (CDCl₃): $\delta = 95$. - ¹³C-NMR (67.88 MHz, CDCl₃, 223 K): $\delta = 136.14$ (s, C-4a/7a), 37.50 (t, 116.4, C-1/3), 28.33 (t, 124.3, C-4/7), 23.31 (t, 126.6, C-5/ 6), 8.94 (q br, Me, 115.4).

4,5,6,7-Tetrahydro-2-methyl-2-boraindan-Trimethylamin (5e NMe₃): Zu einer Lösung von 0.80 g (6.0 mmol) 5e in wenig Et₂O wird bei -78°C eine Lösung von NMe₃ in Et₂O getropft. Es wird 1 h bei Raumtemp. gerührt. Nach Entfernen alles Flüchtigen i. Vak. wird aus Hexan umkristallisiert. Man erhält 0.95 g (82%) 5e · NMe₃; Schmp. 66–67°C. – MS, m/z (%): 134 (81) [M⁺ – NMe₃], 58 (100) $[Me_2NCH_2^+ - Me]$. - ¹H-NMR (60 MHz, CDCl₃, Raumtemp.): $\delta = 1.85$ (br, 4-/7-H), 1.53 (br, 5-/6-H), 0.91 (br, 1-/3-H); BMe: -0.26 (br); NMe₃: 2.39 (s). - ¹H-NMR (500 MHz, CDCl₃, 218 K): $\delta = 1.84$ (br, 4-/7-H), 1.50 (br, 5-/6-H), 0.96 (d, 17.0, 1-/3-H_a), 0.82 (d, 17.0, 1-/3-H_b); Methyl: -0.23 (s); NMe₃: 2.39 (s). $-^{11}$ B-NMR (CDCl₃): $\delta = 3. - {}^{13}$ C-NMR (67.88 MHz, CDCl₃, 223 K): $\delta = 136.3$ (s, C-4a/7a), 31.9 (t br, 111.2, C-1/3), 29.4 (t, 123.4, C-4/ 7), 23.6 (t, 125.9, C-5/6); BMe: 6.7 (q br, 112); NMe₃: 47.9 (q, 138.9, 3 NMe).

Strukturbestimmung von 3,4-Me₂C₄H₄BPh (4d): C₁₂H₁₅B, Molmasse 170.06 g/mol, monoklin, Cc (Nr. 9)^[31], a = 2096.9(8), b =1183.7(2), c = 843.7(2) pm, $\beta = 90.08(2)^{\circ}$, V = 2.094(2) nm³, Z =8, $d_{\text{ber.}} = 1.079 \text{ g/cm}^3$, $\mu = 4.0 \text{ cm}^{-1}$. CAD4-Diffraktometer (Enraf-Nonius), Cu-Ka-Strahlung (Graphitmonochromator), Kristallgröße $1.0 \times 1.0 \times 0.8$ mm³, Meßtemperatur –40°C. Im ω - Θ -Scan wurden 2223 Reflexe (5° < Θ < 65°) vermessen, von denen 2001 symmetrieunabhängige mit $I > 2.0\sigma(I)$ zur Verfeinerung (266 Parameter) benutzt wurden. Die Strukturlösung^[32] erfolgte mit Direkten Methoden (MULTAN)^[33] und Differenz-Fourier-Synthesen. Alle Nichtwasserstoffatome wurden anisotrop, die Wasserstoffatome an C-2 und C-5 isotrop verfeinert. Alle anderen Wasserstoffatome wurden bei der Verfeinerung mitgeführt $[d_{CH} = 0.98 \text{ Å}]$ $B_{\rm iso}({\rm H}) = 1.3 \ B_{\rm iso}({\rm C})$]. Gewichtungsfaktor $1/\sigma^2(F_{\rm o}), R = 0.057,$ $R_w = 0.079$, keine Absorptionskorrektur, Korrektur auf Sekundärextinktion; die größte Restelektronendichte betrug $0.343 \cdot 10^{-6}$ e $pm^{-3[34]}$.

- ^[1] G. Zweifel, S. J. Backlund, T. Leung, J. Am. Chem. Soc. 1977, 99, 5192-5194; G. M. Clark, K. G. Hancock, G. Zweifel, ibid. 1971, 93, 1308-1309; T. M. Shoup, G. Zweifel, Organometallic Syntheses 1986, 3, 456–458.
- ^[2] ^[2a] G. E. Herberich, W. Boveleth, B. Heßner, M. Hostalek, D. P. J. Köffer, H. Ohst, D. Söhnen, *Chem. Ber.* **1986**, *119*, 420–433. – ^[2b] G. E. Herberich, B. Heßner, D. Söhnen, *J. Or*-
- ^{420–455.} ¹⁵⁰ G. L. Herochen, P. Alexan, P. 2019
 ganomet. Chem. 1982, 233, C35-C37.
 ^[3a] J. M. Schulman, R. L. Disch, P. v. R. Schleyer, M. Bühl, M. Brehmer, W. Koch, J. Am. Chem. Soc. 1992, 114, 7897–7901.
 ^[3b] P. J. Fagan, E. G. Burns, J. C. Calabrese, J. Am. Chem. Soc. 1988, 110, 2979–2981.
 ^[3c] P. J. Fagan, W. A. Nugent, J. Soc. 1988, 110, 2979–2981.
 ^[3c] P. J. Fagan, W. A. Nugent, J. C. Calabrese, J. Am. Chem. Soc. 1988, 110, 2979–2981. [3] Calabrese, J. Am. Chem. Soc. 1994, 116, 1880-1889.
- (41
- G. E. Herberich, S. Wang, Chem. Ber. 1990, 123, 1625–1627.
 G. E. Herberich, H. Ohst, Z. Naturforsch., Teil B, 1983, 38, 1388–1391; G. E. Herberich, M. Hostalek, R. Laven, R. Boese, [5] Angew. Chem. 1990, 102, 330–331; Angew. Chem. Int. Ed. Engl. 1990, 29, 317–318.
- G. E. Herberich, U. Englert, S. Wang, Chem. Ber. 1993, 126, 297-304; und für C-substituierte Derivate: G. Zweifel, T. M. Shoup, J. Am. Chem. Soc. 1988, 110, 5578-5579.
- G. E. Herberich, T. Carstensen, D. P. J. Köffer, N. Klaff, R. Boese, I. Hyla-Kryspin, R. Gleiter, M. Stephan, H. Meth, U. Zenneck, Organometallics 1994, 13, 619-630. r81
- K. Fujita, Y. Ohnuma, H. Yasuda, H. Tani, J. Organomet. Chem. 1976, 113, 201-213; H. E. Ramsden, U. S. Pat. 1968, 3388179; Chem. Abstr. 1968, 69, 67563d.
- ^[9] H. Yasuda, Y. Nakano, K. Natsukawa, H. Tani, Macromolecu-

- [10] H. Yasuda, Y. Kajihara, K. Mashima, K. Nagasuna, K. Lee, A. Nakamura, Organometallics 1982, 1, 388-396.
- ^[11] R.D. Rieke, H. Xiong, J. Org. Chem. 1991, 56, 3109-3118.
- ^[12] M. Takaki, Y. Kondo, R. Asami, Kobunshi Ronbunshu 1989, 46, 545-550.
- ^[13] R. Baker, R. C. Cookson, A. D. Saunders, J. Chem. Soc., Perkin Trans. 1, 1976, 1809-1814.
- ^[14] H. Xiong, R. D. Rieke, Tetrahedron Lett. 1991, 32, 5269-5272.
- ^[15] G. E. Herberich, U. Eigendorf, U. Englert, Chem. Ber. 1994, 126, 1037-1039
- [16] I. Fleming, Grenzorbitale und Reaktionen organischer Verbindun-gen, VCH Verlagsgesellschaft, Weinheim, 1990.
- ^[17] A. M. Moiseenkov, B. A. Czeskis, A. V. Semenovsky, Tetrahedron Lett. 1980, 21, 853-856; S. Akutagawa, S. Otsuka, J. Am. *Chem. Soc.* **1976**, 98, 7420–7421; vgl. auch H. Yamamoto, H. Yasuda, K. Tatsumi, K. Lee, A. Nakamura, J. Chen, Y. Kai, N. Kasai, *Organometallics* **1989**, 8, 105–119.
- ^[18] A. Fürstner, Angew. Chem. 1993, 105, 171-197; Angew. Chem. Int. Ed. Engl. 1993, 32, 164.
- [19] A. Baeyer, Ber. Disch. Chem. Ges. 1905, 38, 2759-2765.
 [20] P. K. Freeman, L. L. Hutchinson, J. Org. Chem. 1983, 48, 879-881; B. Bogdanović, S.-T. Liao, R. Mynott, K. Schlichtig, U. Westeppe, Chem. Ber. 1984, 117, 1378-1392; J. Blenkers, B. Harrer, F.:: Bolhuis, A. L. Warner, I. H. Tauban, Organization Hessen, F. v. Bolhuis, A. J. Wagner, J. H. Teuben, Organometallics 1987, 6, 459-469
- [21] H. Bönnemann, B. Bogdanović, R. Brinkmann, D.-W. He, B. Spliethoff, Angew. Chem. 1983, 95, 749-750; Angew. Chem. Int. Ed. Engl. 1983, 22, 728; B. Bogdanović, Acc. Chem. Res. 1988,
- [21] J. M. McCall, J. R. Morton, K. F. Preston, Organometallics
 [22] J. M. McCall, J. R. Morton, K. F. Preston, Organometallics
 [984, 3, 238-240; T. Alonso, S. Harvey, P. C. Junk, C. L. Raston, B. W. Skelton, A. H. White, *ibid.* 1987, 6, 2110-2116; A. Stanger, K. P. C. Vollhardt, *ibid.* 1992, 11, 317-320; T. Katager, K. Turturzi, K. Kang, K. Muturuzi, M. Muturuzi, M taoka, K. Tsutsumi, K. Kano, K. Mori, M. Miyake, M. Yokota,

H. Shimizu, M. Hori, J. Chem. Soc., Perkin Trans. 1, 1990, 3017 - 3025

- ^[23] K. V. Baker, J. M. Brown, N. Hughes, A. J. Skarnulis, A. Sexton, J. Org. Chem. 1991, 56, 698-703. ^[24] R. D. Rieke, P. T.-J. Li, T. P. Burns, S. T. Uhm, J. Org. Chem.
- 1981, 46, 4324-4326.
- ^[25] Angaben zu 4a und d: D. Söhnen, Dissertation, Techn. Hochschule Aachen, 1984.
- ^[26] Zu 4c: D. Bromm, D. Stalke, A. Heine, A. Meller, G. M. Sheldrick, J. Organomet. Chem. 1990, 386, 1-7.
 ^[27] G. E. Herberich, H.-W. Marx, T. Wagner, unveröffentlicht.
 ^[28] A. H. Chem. Soc. 1969, 91
- [28] A. H. Cowley, J. L. Mills, J. Am. Chem. Soc. 1969, 91, 2911 - 2915
- ^[29] M. Oki, Applications of Dynamic NMR Spectroscopy to Organic *Chemistry*, VCH Verlagsgesellschaft, Weinheim, **1985**, S. 18f. ^[30] G. E. Herberich, T. P. Spaniol, U. Steffan, *Chem. Ber.* **1994**,
- 127. 1401-1404
- [31] International Tables for Crystallography, (Hrsg.: T. Hahn), Bd.
 A, Reidel, Dordrecht, 1983.
- ^[32] B. A. Frenz, The ENRAF-Nonius CAD4-SDP a Real-Time System for Concurrent X-Ray Data Collection and Crystal Structure Determination in Computing the Crystallography (Hrsg.: H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld, G. C. Bassi), Delft University Press, Delft, 1978; SDP-PLUS Version 1.1 (1984) und VAXSDP, Version 2.2 (1985).
 ^[33] P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P.
- Declercq, M. M. Woolfson, MULTAN 80, A System of Compu-ter Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, York (England) and Louvain Belgium), 1980.
- ^[34] Weitere Éinzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-400909, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[206/94]